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Restoration and balance of a folded and faulted surface by best-fitting of 
finite elements: principle and applications 
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Abstraet--A computer program is presented which allows us to test the restoration of a folded and faulted thin 
competent layer and then to balance this surface. The balance of such a surface is useful both to constrain the 
three-dimensional shape of the folds and the geometry of the limits of the faults. If a part of the surface is fixed the 
restoration can also give the finite displacement field linked to the deformation of the layer. The principle of the 
method is given and its accuracy is tested for the restoration of an experimentally folded sheet of paper. Finally 
the applicability to the restoration of natural structures is discussed. 

INTRODUCTION 

WHEN geological structures are drawn in cross-section, 
the available observations are commonly so scattered 
that interpolation is needed between these data. 
Balanced geological cross-section construction tech- 
niques are very useful to help such interpolation since 
this method invokes the application of some simple 
rules, including the restorability of the structures and the 
preservation of the rock volume before and after the 
deformation (Dahlstrom 1969, Hossack 1979). One of 
the most restricting assumptions for the construction of 
balanced cross-sections is that of conservation of volume 
(Goguel 1952). The simplest way to satisfy this assump- 
tion, when balancing a section, is to preserve the length 
of the layers and/or the area between these layers, 
before and after deformation (plane strain assumption). 
Volume change may be integrated when balancing a 
section, but such measurements are very rare (Hossack 
1979, Mugnier & Vialon 1986). 

Using the rule of conservation of area and length in 
cross-sections several authors have developed computer 
programs for section balancing (e.g. Groshong & 
Usdansky 1986, Jones & Linsser 1986, Kligfield et al. 

1986, Medwedeff & Suppe 1986). In recently developed 
programs, interpolations made on the sections may be 
fitted to the geologic map (De Paor 1988), and a com- 
plete set of restoration methods can take into account 
most of the complicated structures of real data (Moretti 
& Larrere in press). Because the rule of conservation of 
length and area generally means that cross-sections must 
be drawn perpendicular to a plane of no finite extension, 
this limits the application of the balanced section 
methods. 

Two approaches can be used to help in the interpre- 
tation of folded and faulted layers that have some out-of- 
the section material movement. These two approaches, 
which may rely on map view restoration, are the follow- 
ing. 

(i) Method of removal of finite deformation using 
strain trajectories was suggested by Schwerdtner (1977) 
and Cobbold (1979), and applied to regional analysis by 
Gratier et al. (1989). Finite strain values and strain 
trajectories of the sedimentary cover of the French 
Chaines Subalpines was deduced from the strain 
measurements of a folded and faulted competent layer. 
This deformation was removed by a finite element 
analysis (84 elements of about 15 x 15 km of initial size) 
and the displacement field of this cover was calculated. 
This method has at least two limitations. Firstly it covers 
a rather large area (the deformation is assumed to be 
homogeneous within each element), and secondly it 
needs good data on the location of the drcollement 
surface (to estimate the vertical displacement values). 

(ii) Another approach, presented here, is to test by a 
trial and error method, the possibility of restoration of a 
folded and faulted surface (Fig. la). The method de- 
scribes a thin competent folded sedimentary layer (zone 
A, Fig. lb) using rigid elements the size of which 
depends on the curvature of the surface. The elements 
are then laid fiat (and automatically fit) to form a 
horizontal surface (initial state of the layer, Fig. ld). The 
degree of compatibility tests the reliability of the geom- 
etry of the deformed layer. If the thickness of the layer 
does not change during folding and faulting, a plausible 
interpretation must be perfectly retrodeformed, as a 
folded and torn sheet of paper may be smoothed with an 
iron. 
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PRINCIPLE OF THE METHOD 
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Fig. I. Sketch of a solution to balance a folded and faulted layer 
(perspective view). A thin competent  layer is restorable to an initial 
horizontal state if its deformation occurs without change of thickness, 
and if this layer is well drawn. (a) Deformed state, folded and faulted 
layer. (b) Partit ion of this folded and faulted surface into several zones 
(five) in order  to have a single valued mathematical  function between 
the X, Y and Z values of co-ordinates on the surface (after interpola- 
t ion between spaced data).  (c) Unfolding of each zone (limited either 
by faults or vertical strata) by the computer  program. (d) Fitting of 

these zones to reconstruct the initial (horizontal) state of the layer. 
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In order to restore and balance a folded and faulted 
surface it is first necessary to describe this surface by a 
network of points with X, Y and Z co-ordinates. As 
mentioned above the initial data set generally requires 
interpolating between spaced observations. Within our 
computer program, cross-sections or maps are digitized 
on a digitizing tablet, and the interpolation is done using 
a cubic spline function (graphical program GREG, Guil- 
loteau & Valiron 1986), on a SPS9 Bull computer (Unix 
system). 

A substantial problem occurs when the same layer 
exists several times on the same vertical line (e.g. over- 
turned limb of a fold, thrust fault). No graphics program 
available to us deals with this problem. In this case it was 
decided to divide the surface into several zones (see Fig. 
lb), so as always to have a single valued relationship 
between the X, Y values of horizontal co-ordinates and 
the Z vertical value. 

After interpolation a regular X Y  grid is obtained for 
each folded zone (limited either by vertical strata or by 
faults, Fig. lb). Then, it is possible to describe such a 
folded surface by a network of rigid triangular elements 
(Fig. 2a).The size and the shape of these elements 
depends both upon the number of points allowed in the 
regular grid and upon the curvature of the surface. A 
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Fig. 2. (a) Segmentat ion of the folded surface into triangular elements generated from points on a regular X Y  grid. (b)- (e)  
All the triangular elements of the folded surface are laid flat and automatically fitted on a horizontal surface: a sketch of the 
sequence of fits is given, the number  in each triangle indicating its rank for fitting. There are various types of elements 
depending on the sequence of restoration relative to their neighbours: the first (hatched) triangle is arbitrarily fixed; the 
white triangles, with two common vertices with their neighbours,  are fixed against a mean position of the preceding 
elements;  the shaded triangles, with three common vertices with their  neighbours, are fitted into a triangular hole with the 
minimization algorithm (f). A first fitting iteration is done (b-d) ,  then successives iterations are run until a minimum value of 
the sum of the distance between all the triangles is obtained (e). (f) Fitting a triangular element AB C  in the triangular hole 
A ' B ' C '  defined by its neighbours. The following definitions are used: mA,mA',mB,mB',mC,mC', are the length of the 
medians from G (the coincident centers of mass of the triangular e lement  and triangular hole), a = angle A G A ' ,  fl = angle 

( B ' G A ' - B G A ) ,  ~, = angle ( A ' G C ' - A G C ) .  
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very good fit may be obtained between initial data and 
finite elements surface (see application of Fig. 3) if a 
sufficient number of elements are used. 

The next step is to lay fiat and automatically fit all the 
triangles on a horizontal surface. An example of the 
sequence of restoration is given in Fig. 2. From its 
deformed state (parallel to the folded surface, Fig. 2a) to 
its final horizontal state (Fig. 2e), each triangle is trans- 
lated and rotated three times in order to have its three 
vertices in the horizontal surface. Then, various types of 
triangles must be considered (see Figs. 2b-e). The co- 
ordinates of the first triangle of the first column of course 
have to be fixed (hatched triangle, Fig. 2b). The trian- 
gles of the first column are then fitted with two common 
vertices between successive triangles (white triangles in 
Fig. 2b). In the second column, the first and second 
triangle are fitted with two common vertices also (white 
triangles in Fig. 2b), but the third (shaded triangle in Fig. 
2c) has to be fitted in the triangular hole defined by its 
neighbours. 

Automatic fitting of plane elements has already been 
discussed by several authors such as Etchecopar (1977) 
and Cobbold (1979). Each element is fitted in a hole 
defined by its neighbours in a manner that minimizes 
voids and overlaps between elements. In the computer 
program described here a simple algorithm is used to 
calculate the position of each triangle in order to have a 
minimum value of the sum of the distances (D) between 
the vertices of each triangle and those of the triangular 
hole defined by its neighbours. An example is given in 
Fig. 2(f), where the triangle ABC is fitted into the 
triangular hole A'B'C' .  Fitting is obtained both by 
translation and by rigid rotation. The minimum value of 
D is obtained when its partial derivatives (translation 
and rotation) are simultaneously equal to zero. To 
minimize the D value by translation the two centres of 
gravity of the two triangles must coincide (Etchecopar 
1977). To minimize the D value by rotation the following 
relation must be verified (aD/aa = 0): 

mA- mA'.  sin a + mB- mB'.  sin a .  cos fl 
+ mB.mB' .s in f l .cos  a + mC.mC'  .cos ?-sin a 

+ mC.mC'-sin ~,.cos a = 0. 

This means that: 

-(roB. mB'.sin fl + mC.mC'.sin ~) 
tan a = 

(mA.mA' + mB.mB'-cosfl + mC.mC' .cosy) 

The various parameters in the above equations are 
defined in the caption of Fig. 2(0. 

This minimum distance algorithm is used for the 
fitting of all the triangles that must be fitted to three 
vertices (shaded triangles, Fig. 2d). In contrast the white 
triangles (Fig. 2d) are fitted simply by using the two 
common vertices between these triangles and an average 
position of their neighbours. The computer program is 
able to treat successives columns of various length, using 
only the two vertices and three vertices methods of 
fitting given above (Fig. 2d). After this initial fitting of all 
the triangles, an approximate initial state of the surface 

is obtained. Then additional fitting iterations are done. 
At this stage almost all the triangles have more than one 
neighbour and the minimum distance algorithm may 
thus be used more systematically (Fig. 2e). Each ite- 
ration calculates the distance between the vertices of 
each triangle and those of its hole and sums the distances 
for all the triangles (ZD for m vertices). As long as this 
sum decreases the iterative process continues. As soon 
as this sum begins increasing (after n iterations), the 
process is stopped, and the geometry of the layer is 
considered as the best initial state of the layer (Fig. 2e). 
The ratio between the ZD value and the sum of the 
length of the medians of the triangles (EM for m 
medians) tests the reliability of the unfolding process. A 
layer folded without change of thickness and well drawn 
is restored with low ZD/ZM value. In contrast the 
restoration of a layer badly drawn or the restoration of a 
layer folded with change of thickness must lead to high 
ZD/ZM value. The range of values for the fitting indi- 
cators (ZD/ZM) x 100 can be discussed by an experi- 
mental test of the method. 

APPLICATION OF THE PROGRAM TO A 
PHYSICAL MODEL 

As the aim of this application was to test the accuracy 
of the method, several constraints had to be considered: 
layer folded without any change of thickness, initial and 
final geometry of the layer well known, folded surface 
easy to describe (by successive cross-sections), irregular 
limits of the surface to model fault boundaries, and 
simple displacement field to test the results of the pro- 
gram. 

To comply with these considerations, the method was 
tested on a folded sheet of paper. The sheet of paper was 
first included within 15 sheets of wax (see Odonne & 
Vialon 1983), then a displacement was imposed along 
the edge to induce heterogeneous folding (with shorten- 
ing varying from 11.5 to 17%). The deformed configur- 
ation of the paper is given on Fig. 3(a) (arrows indicate 
the displacement). After deformation the model was cut 
by five successive cross-sections. These cross-sections 
were digitized. Then interpolation was carried out be- 
tween these sections, by using the spline function in the 
graphics GREG program. Figure 3(c) show that the 
sections through the interpolated surface match the 
initial sections fairly well. 

The restoration calculated by the program (Figs. 4a & 
c) is in good agreement with the true initial state (Fig. 
3a). The slight variations of width in the restored state 
(less than 2%) probably results from minor problems of 
accuracy in the method used to draw the folded surface, 
and in the fitting process. 

Firstly, the cutting of the model may have locally 
distorted the sheet of paper and the digitization process 
may have introduced some errors. These two kinds of 
errors were assumed to be smaller than the size of an 
element (1%). Secondly, the true initial width of the 
sheet was considered as regular, since the lateral limits 
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Fig. 3. (a) A representation of the folded sheet of paper embedded in wax, used as a physical model to test the program, 
showing map view with contours. The initial state is outlined by dashed boundaries, and the displacement from initial to 
final state by arrows. (b) Perspective view of the deformed sheet. (c) Successive cross-sections through the sheet of paper 
embedded in wax. The column on the left are the digitized sections and on the right sections are drawn through the 

interpolated surface. 
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Fig. 4. Map view restoration of the folded sheet of paper using 15,984 triangular elements and with two different sequences 
of fitting: the first restored column (a & b), or row (c & d), is either parallel to the Y axis (left-hand side, a & b), or parallel to 
the X axis (bottom side, c & d). The restored state is given in the two cases (a & c) and may be compared with the true initial 
state (dashed boundaries, Fig. 3a). The total finite displacement of the edge of the sheet, from the initial to the restored 

state, is given in (b) & (d), and may be compared with the true displacement shown by arrows in Fig. 3(a). 
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of the sheet were vertical sections. This was not exactly 
the case in the deformed state since the change of 
direction and plunge of the folds introduced a difference 
between the true initial width of the folded sheet and its 
width on a map view. This difference was not taken into 
account since it also remains smaller than the size of one 
element (see initial state Fig. 3a). 

Finally two sequences of fitting were tested with 
restoration beginning either parallel to Y (left first 
column, Figs. 4a & b) or parallel to X (bottom first row, 
Figs. 4c & d). A small difference appears between these 
two sequences of fitting, particularly on the edge farther 
from the reference axes. The difference of width be- 
tween the two sequences may very locally reach 1%. The 
total displacement of the mobile limit is also given 
correctly both for its direction and for its values (see 
Figs. 4b & d, and compare with the true displacement in 
Fig. 3a). 

This application on a well drawn surface, folded 
without change of thickness, also gives experimental 
values for the fitting indicator (ED/EM) × 100. De- 
pending on the sequence of restoration, these values 
range from 1% (first column perpendicular to the dis- 
placement, Figs. 4 a & b) to 1.25% (first row parallel to 
the displacement, Figs. 4c & d). The first tylJe of se- 
quence is slightly better than the second. 

(ii) If the geometry of a layer is perfectly known the 
program is useful in revealing the zone of change of 
thickness and in estimating the magnitude of this 
change. 

The fitting indicator can also be estimated for each 
pair of triangles (triangular element/triangular hole). 
Distribution values of such indicators are helpful for 
interpretation by the trial and error method. 

(2) The program is also useful for testing the resto- 
ration of folded and faulted surfaces. 

In this case (Fig. 1) after the restoration and balance 
of each folded zone (as explained above, see Fig. lc), all 
these zones must fit together (Fig. ld). This fitting is not 
automatic. Rigid translation and rotation of the restored 
zones are done with a work station (Bull DPX 1000). 
Misfitting along the faults implies either local internal 
deformation or bad drawing of the limits of these faults. 
As for the preceding application, a trial and error 
method allows one to estimate either the area change 
(on a well constrained layer) or to help interpretation of 
the limits of the faults (on a layer with no change of 
thickness). 
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APPLICABILITY TO THE RESTORATION OF 
NATURAL STRUCTURES REFERENCES 

This program may have at least two kinds of appli- 
cation for naturally deformed structures. 

(1) The program is useful for testing the restoration of 
a folded surface limited by irregular boundaries. 

In this case the values of the fitting indicator give the 
reliability of the restoration. 

A layer well drawn and folded without change of 
thickness must be restored with a low fitting indicator 
value, for example 1% as experimentally tested on the 
folded sheet of paper. Such a range of values (0.5-1%) 
has been confirmed by first tests on the restoration of a 
naturally folded and faulted competent layer, in a region 
with high density of data (oilfield). A layer folded with 
change of thickness or a layer folded without change of 
thickness but badly drawn may also be restored by the 
computer program, but with high value for the fitting 
indicator (for example 40% given by the attempt to 
restore a hemispherical dome). The problem is then the 
following. 

(i) If it is certain (for example by microstructural 
analysis) that no change occurs in the thickness of the 
layer during deformation, or that this change is known, 
the program is useful to help interpretation of a folded 
surface that is poorly constrained by data. If the surface 
is not restorable (high fitting indicator value) the shape 
of the folds must be modified by a trial and error method 
until a restorable interpretation (with low fitting indi- 
cator value) is obtained. 
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